Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters










Publication year range
1.
Brain Neurosci Adv ; 8: 23982128241255798, 2024.
Article in English | MEDLINE | ID: mdl-38800359

ABSTRACT

The binding of information from different sensory or neural sources is critical for associative memory. Previous research in animals suggested that the timing of theta oscillations in the hippocampus is critical for long-term potentiation, which underlies associative and episodic memory. Studies with human participants showed correlations between theta oscillations in medial temporal lobe and episodic memory. Clouter et al. directly investigated this link by modulating the intensity of the luminance and the sound of the video clips so that they 'flickered' at certain frequencies and with varying synchronicity between the visual and auditory streams. Across several experiments, better memory was found for stimuli that flickered synchronously at theta frequency compared with no-flicker, asynchronous theta, or synchronous alpha and delta frequencies. This effect - which they called the theta-induced memory effect - is consistent with the importance of theta synchronicity for long-term potentiation. In addition, electroencephalography data showed entrainment of cortical regions to the visual and auditory flicker, and that synchronicity was achieved in neuronal oscillations (with a fixed delay between visual and auditory streams). The theoretical importance, large effect size, and potential application to enhance real-world memory mean that a replication of theta-induced memory effect would be highly valuable. The present study aimed to replicate the key differences among synchronous theta, asynchronous theta, synchronous delta, and no-flicker conditions, but within a single experiment. The results do not show evidence of improved memory for theta synchronicity in any of the comparisons. We suggest a reinterpretation of theta-induced memory effect to accommodate this non-replication.

2.
mSystems ; 9(5): e0000424, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38591897

ABSTRACT

Seed endophytic microbiomes are shaped by host and environmental factors and play a crucial role in their host growth and health. Studies have demonstrated that host genotype, including hybridization, affects seed microbiomes. Heterosis features are also observed in root-associated microbiomes. It remains unclear, however, whether heterosis exists in seed endophytic microbiomes and whether hybrid microbiota provide noticeable advantages to host plant growth, especially to seed germination. Here, we investigated the structure of seed endophytic bacterial and fungal communities from three hybrid rice varieties and their respective parents using amplicon sequencing targeting 16S rRNA and ITS2 genes. Heterosis was found in diversity and composition of seed endophytic microbiomes in hybrids, which hosted more diverse communities and significantly higher abundances of plant growth-promoting taxa, such as Pseudomonas and Rhizobium genera compared with their parental lines. Co-occurrence network analysis revealed that there are potentially tighter microbial interactions in the hybrid seeds compared with their parent seeds. Finally, inoculation of seed-cultivable endophytes, isolated from hybrids, resulted in a greater promotion of seed germination compared with those isolated from parent lines. These findings suggest that heterosis exists not only in plant traits but also in seed endophytic microbiota, the latter in turn promotes seed germination, which offers valuable guidance for microbiome-assisted rice breeding.IMPORTANCEGenetic and physiological changes associated with plant hybridization have been studied for many crop species. Still, little is known about the impact of hybridization on the seed microbiota. In this study, we indicate that hybridization has a significant impact on the endophytic bacterial and fungal communities in rice seeds. The seed endophytic microbiomes of hybrids displayed distinct characteristics from those of their parental lines and exhibited potential heterosis features. Furthermore, the inoculation of seed-cultivable endophytes isolated from hybrids exhibited a greater promotion effect on seed germination compared with those isolated from the parents. Our findings make a valuable contribution to the emerging field of microbiome-assisted plant breeding, highlighting the potential for a targeted approach that aims to achieve not only desired plant traits but also plant-beneficial microbial communities on the seeds.


Subject(s)
Endophytes , Germination , Hybrid Vigor , Microbiota , Oryza , Seeds , Oryza/microbiology , Oryza/genetics , Oryza/growth & development , Endophytes/genetics , Seeds/microbiology , Seeds/genetics , Seeds/growth & development , Hybrid Vigor/genetics , Microbiota/genetics , Hybridization, Genetic , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Fungi/genetics , Fungi/isolation & purification , Fungi/classification
3.
Science ; 383(6682): eadj9198, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38300992

ABSTRACT

Mapping single-neuron projections is essential for understanding brain-wide connectivity and diverse functions of the hippocampus (HIP). Here, we reconstructed 10,100 single-neuron projectomes of mouse HIP and classified 43 projectome subtypes with distinct projection patterns. The number of projection targets and axon-tip distribution depended on the soma location along HIP longitudinal and transverse axes. Many projectome subtypes were enriched in specific HIP subdomains defined by spatial transcriptomic profiles. Furthermore, we delineated comprehensive wiring diagrams for HIP neurons projecting exclusively within the HIP formation (HPF) and for those projecting to both intra- and extra-HPF targets. Bihemispheric projecting neurons generally projected to one pair of homologous targets with ipsilateral preference. These organization principles of single-neuron projectomes provide a structural basis for understanding the function of HIP neurons.


Subject(s)
Axons , Brain Mapping , Hippocampus , Neurons , Animals , Mice , Axons/physiology , Axons/ultrastructure , Hippocampus/ultrastructure , Neurons/classification , Neurons/ultrastructure , Single-Cell Analysis/methods , Nerve Net , Male , Mice, Inbred C57BL
4.
Huan Jing Ke Xue ; 44(11): 6362-6376, 2023 Nov 08.
Article in Chinese | MEDLINE | ID: mdl-37973118

ABSTRACT

To explore the effects of different aeration methods on the abundance of microorganisms and microorganism community structure in rice rhizosphere soil, two rice varieties, Miyang 46(MY) and Zhenshan 97B(ZS), were used with three aeration treatments:alternate wetting and drying(AWD), continuous flooding and aeration(CFA), and continuous flooding(CF). The diversity of bacterial and fungal communities in rice rhizosphere soil was analyzed using Illumina MiSeq high-throughput sequencing. Soil physical and chemical factors were also analyzed. The results showed that the dominant bacterial communities in rice rhizosphere soil were Chloroflexi, Actinobaciota, Acidobacteria, Proteobacteria, and Firmicutes, and the dominant fungal communities were Ascomycota and Basidiomycota in rice rhizosphere soil. At each growth stage, the relative abundance of Chloroflexi and Acidobacteria was higher in the AWD treatment than in the other treatments, and the relative abundance of Actinobaciota was higher in the CFA treatment than in the other treatments. The relative abundance of Firmicutes was lower in the AWD treatment than in the other treatments. Aeration methods affected the diversity and richness of rhizosphere microbial species. For example, the diversity of bacterial species was higher, and the richness of bacterial species was lower in the AWD treatment than that in the other treatments. The diversity and richness of fungal species were higher in the AWD and CFA treatments than those in the CF treatment. The physical and chemical properties of rhizosphere soil were also affected by aeration method. The soil redox potential(Eh) was the highest in AWD, followed by that in CFA and CF, and significant differences were observed among treatments. The NO3--N content was significantly higher, and the NH4+-N content was significantly lower in the AWD and CFA treatments than in the CF treatment in rhizosphere soil at all growth stages. Correlation analysis showed that the pH and Eh of rhizosphere soil were positively correlated with the diversity of bacterial species, negatively correlated with the richness of bacterial species, and positively correlated with the diversity and richness of fungal species. Redundancy analysis indicated that the relative abundance of Chloroflexi was positively correlated with the pH and NH4+-N content at each period, positively correlated with the Eh and NO3--N content at the tillering and heading stages, and negatively correlated with Eh and NO3--N content at the maturity stage. At each growth stage, the pH and Eh were positively correlated with the relative abundance of Acidobacteria, Proteobacteria, and Basidiomycota and negatively correlated with the relative abundance of Firmicutes and Ascomycota. During the entire growth period, the relative abundance of Ascomycota was negatively correlated with the NO3--N content and positively correlated with the NH4+-N content, and the opposite patterns were observed for the relative abundance of Basidiomycota. In summary, rhizosphere oxygenation enhanced the soil oxygen environment, altered soil physical and chemical properties, and affected microbial community diversity and richness to optimize microbial community structure.


Subject(s)
Microbiota , Mycobiome , Oryza , Rhizosphere , Soil/chemistry , Bacteria/genetics , Acidobacteria , Proteobacteria , Firmicutes , Soil Microbiology
5.
Ann Plast Surg ; 91(4): 459-467, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37713151

ABSTRACT

BACKGROUND: Previously reported pre-expansion techniques of the anterolateral thigh flap are mainly perforator-based. The expansion will interfere with the flap harvest if the requisite perforator is found unsuitable as a pedicle. Expansion of the peripheral territories of the flap donor site can minimize the interference from the expansion. METHODS: Forty-eight peripheral pre-expansions of the anterolateral thigh flap were retrospectively reviewed in 38 patients from 2012 to 2021. The reconstructive outcomes, including flap success, increase in flap size, donor-site closure, and complications, were assessed. In addition, subgroup analysis was performed based on the expanded territories. RESULTS: Rate of successful flap elevation of 100% and flap survival rate of 97.9% were achieved. One patient had total flap necrosis, which was salvaged with skin grafting. Peripheral expansion attained a mean 55.5% ± 19.6% increase in flap width. Primary donor-site closure was accomplished in 95.8% of flaps and fascial restoration in 97.9% of the donor sites. Three patients developed major expansion-related complications, which required surgical intervention. One patient had wound dehiscence in the donor site, which healed by secondary intention. Compared with other subgroups, the lateral-and-medial-side expansion provided a larger flap for reconstruction (P = 0.001). CONCLUSIONS: If time is not of the essence, peripheral pre-expansion permits direct donor-site closure with size augment of the anterolateral thigh flap. In addition, it preserves the reliability and versatility of the anterolateral thigh flap.


Subject(s)
Surgical Flaps , Thigh , Humans , Thigh/surgery , Reproducibility of Results , Retrospective Studies , Tissue Expansion , Postoperative Complications
7.
Curr Biol ; 33(15): 3279-3288.e7, 2023 08 07.
Article in English | MEDLINE | ID: mdl-37463586

ABSTRACT

Episodic memory provides humans with the ability to mentally travel back to the past,1 where experiences typically involve associations between multimodal information. Forming a memory of the association is thought to be dependent on modification of synaptic connectivity.2,3 Animal studies suggest that the strength of synaptic modification depends on spike timing between pre- and post-synaptic neurons on the order of tens of milliseconds, which is termed "spike-timing-dependent plasticity" (STDP).4 Evidence found in human in vitro studies suggests different temporal scales in long-term potentiation (LTP) and depression (LTD), compared with the critical time window of STDP in animals.5,6 In the healthy human brain, STDP-like effects have been shown in the motor cortex, visual perception, and face identity recognition.7,8,9,10,11,12,13 However, evidence in human episodic memory is lacking. We investigated this using rhythmic sensory stimulation to drive visual and auditory cortices at 37.5 Hz with four phase offsets. Visual relative to auditory cued recall accuracy was significantly enhanced in the 90° condition when the visual stimulus led at the shortest delay (6.67 ms). This pattern was reversed in the 270° condition when the auditory stimulus led at the shortest delay. Within cue modality, recall was enhanced when a stimulus of the corresponding modality led the shortest delay (6.67 ms) compared with the longest delay (20 ms). Our findings provide evidence for STDP in human episodic memory, which builds an important bridge from in vitro studies in animals to human memory behavior.


Subject(s)
Memory, Episodic , Animals , Humans , Long-Term Potentiation/physiology , Neurons/physiology , Brain , Mental Recall , Neuronal Plasticity/physiology , Action Potentials/physiology
8.
eNeuro ; 10(3)2023 03.
Article in English | MEDLINE | ID: mdl-36810147

ABSTRACT

Rodent studies suggest that spike timing relative to hippocampal theta activity determines whether potentiation or depression of synapses arise. Such changes also depend on spike timing between presynaptic and postsynaptic neurons, known as spike timing-dependent plasticity (STDP). STDP, together with theta phase-dependent learning, has inspired several computational models of learning and memory. However, evidence to elucidate how these mechanisms directly link to human episodic memory is lacking. In a computational model, we modulate long-term potentiation (LTP) and long-term depression (LTD) of STDP, by opposing phases of a simulated theta rhythm. We fit parameters to a hippocampal cell culture study in which LTP and LTD were observed to occur in opposing phases of a theta rhythm. Further, we modulated two inputs by cosine waves with 0° and asynchronous phase offsets and replicate key findings in human episodic memory. Learning advantage was found for the in-phase condition, compared with the out-of-phase conditions, and was specific to theta-modulated inputs. Importantly, simulations with and without each mechanism suggest that both STDP and theta phase-dependent plasticity are necessary to replicate the findings. Together, the results indicate a role for circuit-level mechanisms, which bridge the gap between slice preparation studies and human memory.


Subject(s)
Long-Term Potentiation , Neuronal Plasticity , Humans , Action Potentials/physiology , Neuronal Plasticity/physiology , Long-Term Potentiation/physiology , Neurons/physiology , Synapses/physiology
9.
Sci Total Environ ; 857(Pt 2): 159181, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36191720

ABSTRACT

The intensive use of chemical fertilizer, particularly nitrogen (N) has resulted in not only markedly increased crop yields but also detrimental effects on ecosystems. Plant microbiomes represent an eco-friendly alternative for plant nutrition and productivity, and the effect of N fertilization on plant and soil microbes has been well studied. However, if and how N fertilization modulates seed endophytic microbiomes and grain quality remains largely unknown. Here, we investigated the effect of different N fertilization rates on rice seed endophytic bacterial and fungal communities as well as on grain quality. Higher bacterial and fungal community diversity and richness, but lower grain protein and amino acid contents were found in seeds of rice treated moderate N fertilization than those treated insufficient or excessive N input. There were also more complex co-occurrence networks, and an enrichment of putative beneficial bacterial taxa in seeds under moderate N application, while there was an opposite trend under the excessive N treatment. In addition, the grain amylose and amylopectin contents were positively correlated with the relative abundance of bacterial and fungal dominant genera, while the grain amino acid contents were negatively correlated with the bacterial dominant genera but positively associated with fungal dominant genera. Together, we demonstrate that moderate N fertilization can enhance bacterial and fungal community colonization in seeds and improve grain eating and cooking qualities. This study extends our knowledge regarding the significant role of rational fertilization on seed-microbe interactions in sustainable agriculture.


Subject(s)
Microbiota , Oryza , Oryza/chemistry , Nitrogen/analysis , Fertilizers/analysis , Edible Grain/chemistry , Seeds/chemistry , Bacteria/metabolism , Amino Acids/analysis , Fertilization
10.
Am Nat ; 200(5): 634-645, 2022 11.
Article in English | MEDLINE | ID: mdl-36260852

ABSTRACT

AbstractAlthough more frequently discussed recently than previously, the role of ecology in homoploid hybrid and allopolyploid speciation has not been subjected to comparative analysis. We examined abiotic niche divergence of 22 assumed homoploid hybrid species and 60 allopolyploid species from that of their progenitors. Ecological niche modeling was employed in an analysis of each species' fundamental niche, and ordination methods were used in an analysis of realized niches. Both analyses utilized 100,000 georeferenced records. From estimates of niche overlap and niche breadth, we identified for both types of hybrid species four niche divergence patterns: niche novelty, niche contraction, niche intermediacy, and niche expansion. Niche shifts involving niche novelty were common and considered likely to play an important role in the establishment of both types of hybrid species, although more so for homoploid hybrid species than for allopolyploid species. Approximately 70% of homoploid hybrid species versus 37% of allopolyploid species showed shifts in the fundamental niche from their parents, and ∼86% versus ∼52%, respectively, exhibited shifts in the realized niche. Climate was shown to contribute more than soil and landform to niche shifts in both types of hybrid species. Overall, our results highlight the significance of abiotic niche divergence for hybrid speciation, especially without genome duplication.


Subject(s)
Ecology , Genetic Speciation , Ecosystem , Climate , Soil
11.
Arch Plast Surg ; 49(3): 444-447, 2022 May.
Article in English | MEDLINE | ID: mdl-35832148

ABSTRACT

Reconstruction of soft tissue defects around the knee is challenging, and the most common solution is to use various locoregional flaps or, in some difficult cases, a free flap. The distally based anterolateral thigh (dALT) flap is a commonly used flap that relies on reverse blood flow from the descending branch of the lateral circumflex femoral artery (d-LCFA). Here, we present the case of an anteromedial knee reconstruction using a dALT flap after resection of a pleomorphic undifferentiated sarcoma. The tumor resection resulted in a 14 × 7 cm defect, and a dALT flap, measuring 20 × 8 cm was elevated. During the surgery, we found a robust oblique branch of the LCFA (o-LCFA) sending off two sizable perforators to the anterolateral thigh region, whereas the d-LCFA was relatively small with no usable perforators. Therefore, we harvested a dALT flap relying on reverse flow from the o-LCFA. The patient's postoperative course was uneventful, and the flap survived without complications. This report demonstrates that reverse flow from the o-LCFA may be an alternative to nourish a dALT flap in cases where the d-LCFA is hypoplastic or suitable perforators from the d-LCFA are unavailable.

12.
Science ; 377(6604): eabi8455, 2022 07 22.
Article in English | MEDLINE | ID: mdl-35862527

ABSTRACT

Complex biological processes such as plant growth and development are often under the control of transcription factors that regulate the expression of large sets of genes and activate subordinate transcription factors in a cascade-like fashion. Here, by screening candidate photosynthesis-related transcription factors in rice, we identified a DREB (Dehydration Responsive Element Binding) family member, OsDREB1C, in which expression is induced by both light and low nitrogen status. We show that OsDREB1C drives functionally diverse transcriptional programs determining photosynthetic capacity, nitrogen utilization, and flowering time. Field trials with OsDREB1C-overexpressing rice revealed yield increases of 41.3 to 68.3% and, in addition, shortened growth duration, improved nitrogen use efficiency, and promoted efficient resource allocation, thus providing a strategy toward achieving much-needed increases in agricultural productivity.


Subject(s)
Crop Production , Edible Grain , Oryza , Photosynthesis , Plant Proteins , Transcription Factors , Edible Grain/genetics , Edible Grain/growth & development , Nitrogen/metabolism , Oryza/genetics , Oryza/growth & development , Photosynthesis/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription, Genetic
13.
Syst Biol ; 71(6): 1348-1361, 2022 10 12.
Article in English | MEDLINE | ID: mdl-35689633

ABSTRACT

Whole-genome duplication (WGD) occurs broadly and repeatedly across the history of eukaryotes and is recognized as a prominent evolutionary force, especially in plants. Immediately following WGD, most genes are present in two copies as paralogs. Due to this redundancy, one copy of a paralog pair commonly undergoes pseudogenization and is eventually lost. When speciation occurs shortly after WGD; however, differential loss of paralogs may lead to spurious phylogenetic inference resulting from the inclusion of pseudoorthologs-paralogous genes mistakenly identified as orthologs because they are present in single copies within each sampled species. The influence and impact of including pseudoorthologs versus true orthologs as a result of gene extinction (or incomplete laboratory sampling) are only recently gaining empirical attention in the phylogenomics community. Moreover, few studies have yet to investigate this phenomenon in an explicit coalescent framework. Here, using mathematical models, numerous simulated data sets, and two newly assembled empirical data sets, we assess the effect of pseudoorthologs on species tree estimation under varying degrees of incomplete lineage sorting (ILS) and differential gene loss scenarios following WGD. When gene loss occurs along the terminal branches of the species tree, alignment-based (BPP) and gene-tree-based (ASTRAL, MP-EST, and STAR) coalescent methods are adversely affected as the degree of ILS increases. This can be greatly improved by sampling a sufficiently large number of genes. Under the same circumstances, however, concatenation methods consistently estimate incorrect species trees as the number of genes increases. Additionally, pseudoorthologs can greatly mislead species tree inference when gene loss occurs along the internal branches of the species tree. Here, both coalescent and concatenation methods yield inconsistent results. These results underscore the importance of understanding the influence of pseudoorthologs in the phylogenomics era. [Coalescent method; concatenation method; incomplete lineage sorting; pseudoorthologs; single-copy gene; whole-genome duplication.].


Subject(s)
Gene Duplication , Genetic Speciation , Biological Evolution , Computer Simulation , Models, Genetic , Phylogeny
14.
Nat Neurosci ; 25(4): 515-529, 2022 04.
Article in English | MEDLINE | ID: mdl-35361973

ABSTRACT

Prefrontal cortex (PFC) is the cognitive center that integrates and regulates global brain activity. However, the whole-brain organization of PFC axon projections remains poorly understood. Using single-neuron reconstruction of 6,357 mouse PFC projection neurons, we identified 64 projectome-defined subtypes. Each of four previously known major cortico-cortical subnetworks was targeted by a distinct group of PFC subtypes defined by their first-order axon collaterals. Further analysis unraveled topographic rules of soma distribution within PFC, first-order collateral branch point-dependent target selection and terminal arbor distribution-dependent target subdivision. Furthermore, we obtained a high-precision hierarchical map within PFC and three distinct functionally related PFC modules, each enriched with internal recurrent connectivity. Finally, we showed that each transcriptome subtype corresponds to multiple projectome subtypes found in different PFC subregions. Thus, whole-brain single-neuron projectome analysis reveals organization principles of axon projections within and outside PFC and provides the essential basis for elucidating neuronal connectivity underlying diverse PFC functions.


Subject(s)
Neurons , Prefrontal Cortex , Animals , Axons , Brain , Interneurons , Mice , Neurons/physiology , Prefrontal Cortex/physiology
15.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 36(3): 322-328, 2022 Mar 15.
Article in Chinese | MEDLINE | ID: mdl-35293174

ABSTRACT

Objective: To explore the reliability and effectiveness of prediction of the pedicle length of the proximally-based anterolateral thigh (pALT) flap which was used to repair the defects following the resection of various malignant tumors using computed tomographic angiography (CTA). Methods: The clinical data of 12 patients who met the selection criteria by using pALT flap to repair wounds left after malignant tumor resection between June 2015 and December 2020 were retrospectively analyzed. There were 5 males and 7 females; the age ranged from 16 to 80 years, with an average age of 54.4 years. After tumor resection, the soft tissue defect ranged from 15 cm×5 cm to 30 cm×12 cm; defect sites included 4 cases of lower abdomen, 3 cases of groin, 2 cases of thigh, and 3 cases of buttocks. Preoperative CTA was used to obtain the location information of the descending branch of the lateral femoral circumflex artery and its perforators by maximum density projection, and the length of the pedicle of pALT flap was estimated. Fasciocutaneous flap (5 cases) or myocutaneous flap (7 cases) were cut during operation to repair the defect, and the size of flap ranged from 20 cm×7 cm to 30 cm×12 cm. The donor site of thigh was directly sutured (11 cases) or repaired with skin graft (1 case). Bland-Altman analysis was used to detect the consistency between the pALT flap vascular pedicle length estimated by CTA and the pALT flap vascular pedicle length actually obtained during operation. Results: One case had distal blood supply disturbance of the flap and was repaired with skin graft after debridement; the remaining 11 flaps survived. All donor and recipient incisions healed by first intention. All 12 cases were followed up 1-12 months, with an average of 4.3 months. One patient died of pelvic tumor recurrence at 6 months after operation, and no tumor recurrence was found in the other patients. Preoperative CTA estimated that the length of pALT flap vascular pedicle was 9.3-24.7 cm, with an average of 14.7 cm; the actual length of pALT flap vascular pedicle was 9.5-25.0 cm, with an average of 14.8 cm. Bland-Altman analysis showed that there was no significant difference between the pALT flap vascular pedicle length estimated by CTA before operation and the pALT flap vascular pedicle length actually obtained during operation, and the average difference was 0.1 (95% consistency limit: -0.89, 0.74), indicating that they had good consistency. Conclusion: CTA can be accurately used to localize the perforator and predict the possible pedicle length of the pALT flap. When performing a pALT flap surgery, preoperative CTA is helpful for surgeons to make a preliminary assessment of the difficult of the operation. The time for exploration of perforators and dissection of the vascular pedicle, and complications can be reduced, and the safety of the operation can be improved.


Subject(s)
Plastic Surgery Procedures , Thigh , Adolescent , Adult , Aged , Aged, 80 and over , Angiography , Female , Humans , Male , Middle Aged , Plastic Surgery Procedures/methods , Reproducibility of Results , Retrospective Studies , Thigh/surgery , Young Adult
16.
Front Plant Sci ; 13: 1035027, 2022.
Article in English | MEDLINE | ID: mdl-36600923

ABSTRACT

Heat stress during the reproductive stage results in major losses in yield and quality, which might be mainly caused by an energy imbalance. However, how energy status affected heat response, yield and quality remains unclear. No relationships were observed among the heat resistance, yield, and quality of the forty-nine early rice cultivars under normal temperature conditions. However, two cultivars, Zhuliangyou30 (ZLY30) and Luliangyou35 (LLY35), differing in heat resistance, yield, and quality were detected. The yield was higher and the chalkiness degree was lower in ZLY30 than in LLY35. Decreases in yields and increases in the chalkiness degree with temperatures were more pronounced in LLY35 than in ZLY30. The accumulation and allocation (ratio of the panicle to the whole plant) of dry matter weight and non-structural carbohydrates were higher in ZLY30 than in LLY35 across all sowing times and temperatures. The accumulation and allocation of dry matter weight and non-structural carbohydrates in panicles were higher in ZLY30 than in LLY35. Similar patterns were observed in the relative expression levels of sucrose unloading related genes SUT1 and SUT2 in grains. The ATP content was higher in the grains of LLY35 than in ZLY30, whereas the ATPase activity, which determined the energy status, was significantly lower in the former than in the latter. Thus, increased ATPase activity, which improved the energy status of rice, was the factor mediating the balance among heat-resistance, high-yield, and high-quality traits in rice.

19.
Connect Tissue Res ; 63(4): 329-338, 2022 07.
Article in English | MEDLINE | ID: mdl-34030527

ABSTRACT

AIMS: Tendon development requires the coordinated interaction of muscles and tendons. Muscle-derived cells (MDCs), a mixed cell population containing both myogenic and fibroblastic cell subsets, have been found to be ideal seed cells for tendon regeneration. However, the necessity of these cell types for tendon regeneration has not yet been tested. In this study, we aim to explore the possible synergistic effects of myogenic cells and fibroblasts in engineered tendon regeneration. METHODS: MDCs were separated into rapidly adhering cell (RAC; fibroblasts) and slowly adhering cell (SAC; myogenic cells) populations. Myogenic- and tenogenic-related molecules were analyzed by immunofluorescent staining, RT-PCR and real-time PCR. The proliferative abilities of MDCs, RACs and SACs were also evaluated. Cell-scaffold constructs were implanted into nude mice, and subsequently evaluated for their histologic, ultrastructure, gene expression, and biomechanical characteristics. RESULTS: MDCs have better proliferative activity than RAC and SAC population. RACs could express higher levels of tenogenic-related molecules tenomodulin (TNMD) and scleraxis (SCX) than SACs. Whereas SACs only expressed myogenic-related molecules MyoD. In contrast to the tendons engineered using RACs and SACs, the tendons engineered using MDCs exhibited a relatively more mature and well-organized tissue structure and ultrastructure as well as better mechanical properties. CONCLUSIONS: Fibroblasts in muscle may be the primary cell population involved in tendon regeneration and that myogenic cells are an important component of the niche and control the fibroblast activity during tendon regeneration. The synergistic effects between fibroblasts and myogenic cells significantly contribute to efficient and effective regeneration of engineered tendons.


Subject(s)
Tendons , Tissue Engineering , Animals , Cell Differentiation , Fibroblasts , Membrane Proteins , Mice , Mice, Nude , Muscles , Regeneration , Tendons/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...